Learning Speed Enhancement of Iterative Learning Control with Advanced Output Data based on Parameter Estimation
نویسندگان
چکیده
Learning speed enhancement is one of the most important issues in learning control. If we can improve both learning speed and tracking performance, it will be helpful to the applicability of learning control. Considering these facts, in this paper, we propose a learning speed enhancement scheme for iterative learning control with advanced output data (ADILC) based on parameter estimation. We consider linear discrete-time non-minimum phase (NMP) systems, whose model is unknown, except for the relative degree and the number of NMP zeros. In each iteration, estimates of the impulse response are obtained from input-output relationship. Then, learning gain matrix is calculated from the estimates, and by using new learning gain matrix, learning speed can be enhanced. Simulation results show that the learning speed has been enhanced by applying the proposed method.
منابع مشابه
Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملThe Effect of Input-based and Output-based Focus on Form Instruction on Learning Grammar by Iranian EFL Learners
This quasi-experimental study investigated the effects of input-enhancement and production of sentences, containing the target structures, on learning grammar by Iranian Intermediate EFL learners. Sixty male students in three input, output, and control groups participated in the study. After checking the homogeneity of the participants with a proficiency test, the researchers administered a pre...
متن کاملBilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control
This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملEnhancement of Learning Based Image Matting Method with Different Background/Foreground Weights
The problem of accurate foreground estimation in images is called Image Matting. In image matting methods, a map is used as learning data, which is produced by those pixels that are definitely foreground, definitely background ,and unknown. This three-level pixel map is often referred to as a trimap, which is produced manually in alpha matte datasets. The true class of unknown pixels will be es...
متن کامل